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Nomenclature

Cave

%

cQ

C L

CL(z

CLq

d

Eij

i

k

M

n

N

P%

Pij

coefficient of cosine Fourier series

coefficient of sine Fourier series

the average value of the constant terms in the harmonic

oscillation responses

coefficient of a j term in static flow

2-D lift coefficient.

3-D lift coefficient.

variation of lift coefficient with respect to angle of attack

variation of lift coefficient with respect to pitch rate

a constant

constants associated with the virtual mass effect

constants in amplitude function to be determined

imaginary part of a complex number

index

reduced frequency (=¢o_/voo)

Mach number

index for reduced frequency, also index for the coefficient

in Pad_ approximants

the number of frequency

Pad_ approximants

coefficients for Pad_ approximants



t

t'

UQVLM

V_

Greek:

O_

a 1

s O

am

d

0

time

nondimensional time (=tv_/_)

unsteady quasi-vortex latticemethod program

free stream velocity

angle of attack (=s 0 coskt')

defined as am+a

amplitude of angle of attack

mean angle of attack

time rate of change in angle of attack

reference length

dummy time integration variable

running variable in time

defined as O=kt'



Chapter 1

Introduction

Due to the requirement of increased performance and maneuverability,

the flight envelope of a modern fighter is frequently extended to the high

angle-of-attack regime. Vehicles maneuvering in this regime are subjected

to nonlinear aerodynamic loads. The nonlinearities are due mainly to

three-dimensional separated flow and concentrated vortex flow that occur

at large angles of attack. Accurate prediction of these nonlinear airloads

is of great importance in the analysis of a vehicle's flight motion and in the

design of its flight control system. As Tobak and Schiff mentioned in ref.

1, the main difficulty in determining the relationship between the

instantaneous aerodynamic load on a maneuvering vehicle and the motion

variables is that this relationship is determined not only by the

instantaneous values of motion variables but also by all of the prior states

of the motion up to the current state. Due to advanced computer

techniques, one straightforward way is to solve the flow-field problem and

the dynamic equation together. For example, a CFD method can be used

to solve the Navier-Stokes equations governing the separated flow field.

Then the calculated forces and moments are used in the dynamic equations

governing the vehicle's motion to calculate motion variables. The motion



variables will change the vehicle's attitude, and thus the forces and

moments. Results of repeatedly calculating these coupled equations would

be the complete time histories of the aerodynamic response and of the

vehicle's motion. Although solving these coupled equations is the exact way

to account for the time-history effects in predicting the aerodynamic

response to arbitrary maneuvers, this is obviously a very costly approach.

In particular, at high angles of attack, the aerodynamic loads depend

nonlinearly on the motion variables. Under such conditions, even if the

vehicles start from closely similar initial conditions, they can experience

widely varying motion histories. Thus, a satisfactory evaluation of the

performance envelope of the aircraft may require a large number of coupled

computations, one for each change in initial conditions. Further, since the

motion and the aerodynamic response are linked together in this approach,

there can be no reutilization of the previously obtained aerodynamic

reactions.

To avoid the disadvantage of solving the coupled flow- field equations and

aircraft's motion equations, an alternate approach is to use a mathematical

modeling to describe the steady and unsteady aerodynamics for the

aircraft's equations of motion. Ideally, with a mathematical model, an

evaluation of the aerodynamic terms specified by the model would be

required only once. The specified model can be reutilized to solve the
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aircraft's equations of motion over a range of motion variables and flight

conditions.

In the classical linear potential flow theory (refs. 2 and 3), researchers

in the field of aeroelasticity used the Fourier transform to relate the

aerodynamic response of step change in angle of attack of a wing to that of

harmonic oscillatory motions. The transient aerodynamic reaction to a step

change is termed the "indicial function" and has been calculated for several

classes of isolated wings (refs. 2-5). By a suitable superposition (ref. 6) of

these results, the aerodynamic forces and moments induced in any

maneuvers can be studied (refs. 2 and 3). Tobak has applied the indicial

function concept to analyze the motions of wings and wing-tail combinations

(ref. 7). Later, based on a consideration of function, Tobak and his

colleagues (refs. 1 and 8) have extended the concept ofindicial function into

the nonlinear aerodynamic regimes. The simplest nonlinear aerodynamic

model proposed in ref.1 has been applied by several authors (refs. 9-13) to

perform the analysis. However, that simplest model is accurate only to the

first order of frequency. It needs to be improved for a more general

response.

Aerodynamic forces and moments acting on a rapidly maneuvering

aircraft are, in general, nonlinear functions of motion variables, their time

rate of change, and the history of maneuvering. How these unsteady

aerodynamic forces and moments may be represented becomes uncertain,
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in particular at high angles of attack. If the response is measured by wind-

tunnel dynamic testing, questions arise as to how the measured time-

history data can be analyzed and expressed in a form suitable for flight

dynamic simulation. For a certain type of nonlinearities produced in a test

with small-amplitude oscillation, the analysis has been accomplished by

separating the time-history data into in-phase and out-phase components

(ref. 14). When large-amplitude forced oscillations are employed in the

wind- tunnel testing at a large mean angle of attack, the aerodynamic

phenomena may involve dynamic stall and/or strong vortex flow, with or

without vortex breakdown. In this case, higher harmonic components in

the aerodynamic response are expected to exist (ref. 15) and the

phenomenon of aerodynamic lag may be important. Therefore, a more

general modeling technique is needed.

In this research, a numerical method will be developed to analyze the

nonlinear and time-dependent aerodynamic response to establish the

generalized indicial function in terms of motion variables and their time

rates of change.
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Chapter 2

Mathematical Development

2.1 Aerodynamic Modeling

Tobak and Schiff (ref. 1), based on a consideration of functional,

developed a fundamental formulation of aerodynamic response. For

example, the lif_ response to pitching oscillation may be given in the form

of a generalized indicial response as

/o_ daCn(t)=Cn(O)+ C_[t,r;_(_),_(_),q(_),_l(_)]--_dz

+ _ fo _ dqdrcL_Ct'_;aC_)'_C_) "qC_) '¢(_) ]-_
(1)

where _t and q are the time rate of change in angle of attack and the pitch

rate, respectively, and t is the time. V is the free stream velocity and _ is

a reference length. The variable _ is a running variable in time over the

interval 0 to z. This means that the indicial response depends not only on

the current values of motion variables, but also on the past history of these

variables. For practical implementation, eq. (1) requires further

simplification. By introducing the assumption of a slowly varying motion,
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Tobak and Schiff neglected the dependence of the indicial response on

and q. A slightly simplified expression of eq. (1) can be written as

f0 t

da ('r)
Cr(t)=CL(O)+ Cr. [t-_;a(_)a(_),q(_)] d_dx

+--_.fo_cLq[t-_;a(T)4t(_)'q(_)] dq(_) d_dT

(2)

Although the form of eq. (2) represents a great simplification over that

of eq. (1), the equation still includes the full linear form as a special case.

The main objective in the present investigation is to find a suitable form

for the integrand of eq. (2). Then the time response CL(t) can be calculated

through the integration of eq. (2) by substituting the suitable form of CLct

and CLq. In wind-tunnel testing, q is the same as a. Since the method

developed in this study will be used to analyze wind tunnel data, a will be

used instead of q in the following investigation and the investigation will

be focused on lif_ force.

In the linear theory (refs. 2 and 3), the aerodynamic response could be

separated into a product of an amplitude function and a phase function in

harmonic motion. The amplitude function depends on motion variables and

their time rate of change. On the other hand, the phase function is a

function of frequency and accounts for any phase lag between the response

and the excitation. In a two-dimensional linear theory, the phase function



is given by Theodorsen's circulation function (refs. 2 and 3). After response

has been obtained at different frequencies with the same amplitude in

harmonic oscillation, the phase function can be determined numerically.

After use of reciprocal relations (ref. 16), the indicial function can be

defined by numerical means. This approach has been used for numerical

determination of indicial lii%for plunging airfoil in ref. 5 and for plunging

wings in ref. 17.

The method for the linear theory will be generalized as follows.

Instead of assuming that the aerodynamic response is a product of an

amplitude function and a phase function as it is in the linear theory, it is

taken to be a sum of the products of amplitude functions and phase

functions in harmonic motion; i.e.,

Cr=Co+_ (amplitude function) j • (phase function) j
J

In the linear theory, j equals 1 in the equation. To determine what is

the form of the amplitude functions and the phase functions, the

aerodynamic response due to harmonic oscillation is assumed to be of the

form

C L = F 0 +F(a,d )a + G(a,d )d (3)



and it is defined that

a 1 = a m + a 0 cos(kt')

¢z = a 0 cos(kt')

a = (-aok) sin(kt')

where k is the reduced frequency, t' is the nondimensionalized time, am is

the mean angle of attack and a 0 is the amplitude of angle of attack. To

find the constant F 0 and functions F and G as functions of a(t) and & (t), a

functional analysis is needed. However, the following method, "successive

Fourier analysis," represents a practical way to accomplish the task. The

first step is to Fourier-analyze the response over one period. For simplicity,

a Fourier series with three terms will be used to explain the procedure of

the modeling. Then

C L = A 0 + A 1 cos{} + A 2 cos2{} + A 3 cos3{}

+ B 1 sin{} + B 2 sin2{} + B 3 sin3{} (4)

The second step is to split the result into the form ofeq. (3) with F(a,& )

and G(a,& ) being Fourier-analyzed again. The result after "successive

Fourier Analysis" becomes
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CL = A 0 + { CC[0,0] + CC[1,0]a + CC[2,0]o_ 2

+ DC[0,1]_ + DC[1,1]ad¢ + CC[0,2]_ 2 }a

+ { CS[0,0] + CS[1,0]a + CS[2,0]a 2

+ DS[0,1]a + DS[1,1]aa + CS[0,2]_ 2 }& (5)

The detailed procedure of "successive Fourier analysis" is shown in

Appendix 1. By collecting the same order terms of co, & and their products

together, the result of C L becomes

C L = A 0 + { CC[0,0]a + CS[0,0]d_ }

+ { CC[1,0]a 2 + DC[0,1]ad + CS[1,0]a(_

+ DS[0,1] a 2 }

+ { CC[2,0]a 3 + DC[1,1]a2a

+ CC[0,2]aa 2 + CS[2,0]a2_

+ DS[1,1]aa 2 + CS[0,2]d_ 3 } (6)

It can be seen that for each different frequency k with the same

amplitude, there will be different response C L and different coefficients CC,

DC, CS, and DS. To have practical applications, a general representation

of these coefficients as a function of reduced frequency at a constant

amplitude is needed. From the classical potential theory, it has been found

that Pad_ approximants provide an accurate approximation of the
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theoretical phase function. Therefore, Pad6 approximants will be used for

the present model as phase functions to represent coefficients CC, DC, CS,

and DS. Equation (6) is a useful form for determining stability derivatives

based on forced oscillation tests. For applications to a maneuvering

aircraft, the following representation of aerodynamic response based on the

generalized indicial lift concept is more convenient.

It is recalled that in the classical airfoil theory the circulatory lift is

written as the product of Theodorsen's circulation function and the quasi-

steady lift. In the present nonlinear theory, the same form will also be

adopted. For this purpose, eq. (4) (or the experimental oscillatory results)

is rewritten in a complex form, as follows:

C L = A 0 + (A 1 - iB 1) e ikt' + (A 2 - iB 2) e i2kt'

+ (A 3 - iB3) e i3kt' (7)

It should be kept in mind that only the real part of the response has

physical meaning. The reason to put in the complex form is to benefit from

the great mathematical convenience of the e ikt' notation. If a is rewritten

as

{z = o_0 e ikt'

and

= (ia0k) e ikt'

10



then eqs. (6) and (7) and the classical airfoil theory suggest that the

response could be put in the following form involving the products of

amplitude functions and phase functions as

C_. - Co(k)

+ E11_ + E21& + CI • (Hna + H21_ ) • (I - PD I)

+ m12_ + E22 a + 02 * (S12(_ 2 + S22a_ + H32{_ 2)

• (I - PD 2)

+ EI_ + E2_a + Ca * (Hx]{Z ] + H23(_2_ + H33{Z{%z + Ha]k ] )

• (I - PD_)

(8)

where PD is a Pad_ approximant with order 2 and is defined as

PDj =
PIJ (ik) 2 + Pzj (ik)

P3J (ik) 2 + (ik) + P4j

Ell a + E21 (2 is the virtual-mass effect and accounts for the

noncirculatory lift (ref. 2). In addition, H21 , H22 , H23 , etc., are related to

the pitch-rate effect. It should be noted that those terms inside the

parentheses following C1, C2, C3, such as (Hlla + H21d ), represent the

quasi-steady response and (1 - PDj) represents the unsteady aerodynamic

lag in response. Therefore, the present assumed form for aerodynamic

modeling encompasses the classical linear theory.
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Cj are the reference values used to normalize the lii_ given by

Aj-i Bj in the least squared-error method. A good choice for Cj is to use

the same coefficient in the alJ term as in the steady condition. Therefore,

j is the index consistent with the exponent of the exponential term in eq.

(7). For example if the j's term in eq. (8) represents the coefficient of e ikt',

then j is 1. If the j's term in eq. (8) represents the coefficient of e i2kt' then

j is 2, etc. The first term, C0(k), in eq. (8) is a constant term, supposedly

a function of frequency. From available experimental data (ref. 19), it is

found that an averaged constant can be used to represent C0(k) term as

shown in Figure 1 for a delta wing. The unknown coefficients Plj, P2j, P3j

and P4j are calculated from the least squared-error method. Eli, E21, Hll ,

H12, etc., will be obtained separately by minimizing the sum of squares of

errors. This is equivalent to a two-level optimization method to determine

the unknowns in eq.(8). That is, E, H, etc., are assumed first. Then Plj,

etc., are determined by minimizing the sum of squared errors. The values

of Ell, Hll, etc., are varied next so that the sum of squared errors is

minimized. It was found that this approach is more effective in

determining a global minimum solution for the unknowns than a

straightforward optimization (one level) method because of nonlinearity in

the unknowns in the optimization problem. It should be noted that in the

literature the phase function has been typically determined by the response

to plunging motions. Therefore, those terms associated with _ in eq. (8) do

12



not appear. This would very much simplify the mathematics of determining

the Pad4 approximants. The details of the present method are discussed

in the following.

2.2 Least-Square Method

By choosing proper values of Ell, Hll, H12, etc., in eq. (8), the

corresponding/_ - i Bj term in eq. (7) is then divided by the amplitude

function. The result will appear as

Aj- iBj
(ampli rude function) j

= PIj (ik)2 + P2j (ik)

P3j (ik) 2 + (ik) + P4j

(9)

If both sides of eq. (9) are multiplied by the denominator of the Pad4

approximant and separated into real and imaginary parts, then

Re - Pljk 2- P3jVjk 2 + P4j Vj-Wj k = 0 (10a)

and

Tm_--P.jk+P.jW/- e_jWj-Vjk=0 (10b)

13



The sum of squared errors is defined as

Err - _ Re(kl) 2 + _ Im(kl) 2 (ii)

By equating the first derivatives of squared errors (eq. 11) with respect to

variables Plj, P2j, P3j and P4j to zero, the unknown coefficients Plj, P2j, P3j

and P4j can be determined by

0

o v k:

_ki +W_kl )

V_ki +W_,ki ) + >

_2J I

z-_j!

v,kl
0

o

(12)

where i varies over the range of input frequencies, and the mode subscript

j on V and W has been omitted.

2.3 Gradient Method

After the unknown coefficients Plj, P2j, P3j and P4j have been found, a

one-dimensional gradient method is used to find E and H values which will

make the sum of the squared errors minimum. The E or H value is

perturbed first by a small amount AE or AH to find the gradient of the sum
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of squared errors. If the gradient tends to reduce the error, then the E or

H value is perturbed further until several iterations has been reached (it

is set to be 5 iterations in the current program). After that, the same

procedure is applied to other E or H. Then the whole procedure is repeated

again until several iterations has been reached (it is set to be 10 in the

current program).

Finally, the response of C L is written as

c_

+ Ell_ + E21a + q*

+ El_a ÷ E22a + q *

+ E13a + E23a

÷ca

( H11= + H21_) * (I - PD l)

( H_2=_ + H__2ae+ H_2__-)• (i - PD z)

* ( /-/13a3 + HzHa2_ + H]]a_ z + H43'_]) * (I - PD 3) (13)

It is easily seen that each term in the above equation is a product of an

amplitude function and a phase function. The procedure to put oscillating

response data into the form of eq. (13) is summarized in the next section.

2.4 Summary of Numerical Procedure

Step 1. Steady-state response analysis:

Use Fourier analysis to analyze the steady-flow response over

one period which is the same period as in the harmonic motion. Since in

the steady flow the only variable in response is a, Fourier cosine series are

15



used. Then use eq. (A.3) to decompose the response into a polynomial of

cos(kt') or a. If the final result for the steady response is written as

C L = I 0 + Ii(z + I2 a2 + I3 a3 (14)

then the coefficients C 0, and Cj in eq. (14) are the same value as I 0, and

where j = 1,2,3.

Step 2. Unsteady-response analysis:

Use Fourier analysis to analyze the harmonic motion response

for different frequencies over one period. For each frequency, the response

should be in the same form as in eq. (7).

Step 3. Constant-term analysis:

From step 2, if constant terms appear in the Fourier analysis

then Cav e is calculated from each constant term due to different frequencies

as

N

A o (k.)

Cav_ = n-1 (15)
N
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where N is the number of frequencies used in step 2 and A0(k n) are the

constant terms due to different frequencies k n in Fourier analysis.

Step 4. Amplitude-phase identification:

In this step, the coefficients Aj and Bj calculated from step 2 are put

into the form of a product of amplitude functions and phase functions as in

eq.(14). The procedure is as follows:

4-a Set the initial guess for E or H values.

4-b Use the least-square method to find unknown coefficients

Plj, P2j, P3j and P4j"

4-c Use gradient method to find better E or H values.

Repeat steps 4-a to 4-c until the sum of square errors reached

minimum or the setting iteration limit has been reached.

Although three-term Fourier series are used in the above, the

procedure is applicable to any number of Fourier terms.

2.5 Indicial Formulation

In linear theory, the reciprocal relations (or Fourier summation) has

been used to calculate the indicial response. However, in nonlinear theory

those relations can not be applied. As Tobak (ref. 7) mentioned in his

paper, the aerodynamic response due to a step change should reach steady-

state value asymptotically at subsonic speeds. In linear theory, these

17



asymptotic relations are represented by exponential functions (refs. 2 and

5), and these exponential functions are calculated through the phase

function. Therefore, the phase function in the current nonlinear modeling

will be converted into exponential function in time domain but keep the

amplitude function unchanged. If eq. (13) is rewritten for m-terms Fourier

series as

e L = Cav e

+ E11e + E21&+ C I • (Hna + H2xe) • (I - PD_)

+ E12_ + Ezz_ + C2 * CH1z_ 2 + Hzza_ + H3z_ 2) • (I-PD 2)

+ E13_ + E23& + C 3 * (H13a 3 + H23S2_ + H_3a_ 2 + Ha3_ _)

• (I-PD 3)

+ oo..o.oo°oo.oo.......

j-i

Eija + E2_a

+ (ampli rude function) j • (phase function) j

(16)

then by Fourier inversion of the Padd approximants, the integrand in eq.

(2) can be obtained from the following expression:

18



e-":'z cI e-a'" t:l)
Cr++._, l - CI ,(H1za + H211_) * (i - azz - a2z

+ C 2 * (HI2ff2 + H22Ul_ + S]2_ 2)

e -a_z2 C/• (I - az2 - a2_ e a+_zt')

._-.,.,o.o..o..

m

= _ (amplitude function) j
j=l

* (i atj e -a3_jtl_ _ a2j e -a6jj_1) (17)

where the coefficients alj, a2j, a3j and a4j, are calculated from Pad6

approximants ascorresponding indicial response for nonlinear theory is

defined as

PzJ (ik) Z + P2J (ik)

P3J (ik) 2 + ik + P4:

ik azj + ik a2j

ik + a3j ik + a4j

i (jk) atj + i (jk) azj

i (jk) + ja3j i (jk) + a+j

Then the generalized response for arbitrary motion is obtained by time

integration of eq. (2).
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Chapter 3

Results and Discussion

3.1 Linear Results

Several cases in the two-dimensional and three-dimensional linear flow

have been studied to verify the proposed method of aerodynamic modeling.

3.1.1 Two-Dimensional Flow

The first case studied is a 2-D flat plate oscillating in the incompressible

flow. The amplitude is 57.3 degree (one radian) in angle of attack for the

airfoil. Therefore it oscillates from 57.3 degree of angle of attack to -57.3

degree of angle of attack then back to 57.3 degree of angle of attack for one

cycle with respect to midchord, i.e.

a 1 = 0.0 + 1.0 cos(kt') (in radian)

The steady lift is already known from the linear theory (ref. 2) as 2_a,

and the oscillating complex lift is taken from a 2-D unsteady QVLM

program (ref. 19) as input data for the current model and for comparison.

Through numerical experimentation, it is found that only six frequencies
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are needed to have accurate results. Through the modeling procedure as

summarized in section 2.4, the lift can be written as

cQ=Ella +E21_2 +2x(Hna+H21_)(1.0-PD 1)

where

PD 1 =
Pn (ik) 2 + P21(ik)

P31(ik) 2 + ik + P41

and the values of coefficients Ell , E21 , Hll , H21 and Pil are listed in Table

1. The results for the lii_ coefficients are plotted in Figure 2 for different

numbers of frequencies used. Compared with the aerodynamic responses

by the 2-D UQVLM program, the numerical results from modeling show

excellent agreement.

Two Mach numbers, 0.2 and 0.4, are chosen in the 2-D compressible

flow to verify the current model. A two-dimensional unsteady QVLM (ref.

19) program is again used to calculate the complex lift as input data for the

current model and for comparison. The same frequencies as in the

incompressible flow are used as input also. The results for coefficients Eli,

E21, Hll, H21 and Pil are listed in Table 1. The aerodynamic responses cQ

calculated by the model are plotted in Figures 3 and 4 to compare the
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results from 2-D unsteady QVLM. These figures show that the numerical

results by modeling are very accurate.

3.1.2 Three-Dimensional Flow

The same Mach numbers (includes 0) in the 2-D flow are used in 3-D

attached flow to verify the current model. The geometry is a 70 degree

delta wing which oscillate from zero degree angle of attack to twenty degree

angle of attack i.e.

a 1 = 0.1745329 + 0.1745329 cos kt' (in radian)

This means that the mean angle of attack is ten degree (0.1745329 radian)

and the amplitude of the oscillation is ten degree (0.1745329 radian). The

input aerodynamic responses are calculated from a 3-D unsteady QVLM

program (ref. 20). In the program, the total lift is the sum of steady lift at

the mean angle-of-attack plus unsteady lii_. Since the steady lift is the

same for every term, only the unsteady lift is used in the modeling and for

comparison. Through numerical experimentation, it is found that the

responses at low frequencies do not change significantly, which results in

inaccurate modeling.

responses are needed.

1.0, 2.0, 2.5) are used as input data in the 3-D attached flow cases.

To have accurate approximation, high frequencies'

Seven reduced frequencies (k = 0.01, 0.1, 0.2, 0.6,

The
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results for the coefficients of the modeling are listed in Table 1. The

responses C L from modeling are plotted in Figures 5 to 7 to compare with

the results from 3-D unsteady QVLM program. All of these figures show

very good agreement.

3.2 Nonlinear Result

The experimental data (ref. 21) for a 70-degree delta wing in pitching

oscillation is used to validate the current aerodynamic model. The angle

of attack which describes the pitching motion is given as

a 1 = 27.5 - 27.5 cos kt' (in degree)

which means the delta wing oscillates from zero degree angle of attack to

55-degree angle of attack then back to zero degree angle of attack for one

cycle. The reduced frequency k is nondimensionalized based on wing's root

chord. Five sets of data corresponding to five different frequencies are

available and they will be used as the input data to calculate the

coefficients for the current aerodynamic model. Five terms in the Fourier

series are used for the current aerodynamic model. The calculated

coefficients for the current aerodynamic model are listed in Table 2, and the

response C L is written as
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c_ --c._,

+ E11ck + E21& + CI*(HIIa + H21ck) * (i - PD I)

+ E_ + E2_a + q*(H_a 2 + Hna_ + S_ 2) * (i - PD2)

+ E13Ck + E23& + C3. (H13_ 3 + H23_2_ + H33=_ 2 + H43_k_)

(I - PD 3)

+ E14(k + E24& + C4. (H14_ 4 + H24a3{k + n_4_2ck2 + n¢4a(k3 + Hs4_ 4

• (I - PD 4)

+ Else + E2sa

+ c5 • (u_sa5 + H25_4_ + H3s_3__ + H45a_-e3 + Hs_ 4 + H_e _)

• (I - PD s)

where PDj are the Pad4 approximants.

The result from modeling is plotted in Figure 8, which shows reasonable

agreement with experimental data for each frequency.

3.2.1 Indicial Fomulation

Note that eq. (2) is valid for arbitrary motion. To check its validity in

the nonlinear theory, two oscillatory cases in the last section will be used.

That is, by assuming oscillatory motion in eq. (2), the time-integrated lift

response should agree with the forced-oscillation data. As indicated

earlier,, the integrand of eq. (2) can be written as follows:
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CLlnc_c_el CI * (H11a + HzlgE) * (I- exp I)

+ C 2 * (/'/'12{%2 + H22{Z{_ + H32{_ 2) * (I - exp z)

+ C3 * (H13a 3 + Hz3a2_ + H33a_ z + H43_ 3) * (l-exp3)

+ q * (H14a 4 + H24a3_ + H34_ad z + H4_a4C3 + H,4d 4)

• (I - exp 4)

+ c5 * (H1sa5 + S25_4e + H3sa3__ + H45a2_ 3 + Hssa_ 4 + H65_ s)

• (I - exp S)

where the functions expj are converted from Pad4 approximants as

e a3J*J" _i ea,j,j , t/exp j = alj + a2j

By differentiating with a and &, CLa , CLa are obtained as follows:

C_,= q* H11 * (i- exp I)

+ C2 * (2H1xa + H22_) * (I - exp 2)

+ 03 * (3/-/131% 2 + 2H__3a_ + H334_2)

• (I - exp 3)

+ Ca * (4Hlaa 3 + 3H24{Z2_ + 2H3a_ _-+ Haa_ 3)

• (i - exp.)

• Cs • (5Hls(z a + 4H25_3_ * 3g_s_z& z . 2Has(_ _ . Hss& a)

• (I - exp s)
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= CI * //'21 , (i - exp I)

+ cz • (Hn_ + 2Hn_) • (I -exp 2)

+ c3 • (H23a2 + 2_33a_ + 3H43_ _) • (i - exp 3)

+ c4 • (H24_3 + 2H34a2_ + 3H44a_2+ 4H54_ 3)

(i - exp 4)

+ Cs * (H2sa 4 + 2H3sa34{ + 3H4sr_2{_2 + 4,Hssa_{3 + 5H6s_ 5)

• (i - exp 5)

The function CL(0) in eq. (2) includes the initial conditions and

virtual mass effect. In the present case, CL(0) is calculated as

CL(0) = CL(t,a(0),& (0)) + Cav e

+ Ell& + E21/2 + E126_ 2 + E2202 + El36_ 3 + E23_ 3

+ El4& 4 + E24 ¢£ 4 + El5& 5 + E25 (_ 5

where the subscript to the (z-terms indicates the order of the harmonics.

For example, a 2 is proportional to the second harmonics. Simpson's 1/3-

rule is used to integrate eq. (2). Since the angle of attack is set to be a

complex number (cos(kt')+i sin(kt')) in oscillating cases, only the real part

of the integrated lift is taken. The lift by integrating eq. (2) for a 70-deg.

oscillating delta wing with frequencies k=0.098 and k=0.165 are plotted in

Figure 9. Compared with the lift from aerodynamic modeling, the

integrated lift shows good agreement.
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Appendix

Successive Fourier Analysis

The first step of "successive Fourier analysis" is to Fourier-analyze the

response over one period. For simplicity, a Fourier series with three terms

will be used to explain the procedure of the modeling. Then

C L = A 0 + A 1 cos0 + A 2 cos20 + A 3 cos30

+ B 1 sin0 + B 2 sin20 + B 3 sin30 (A1)

where

Ao- 2_ c_d0

A_ = -_ C_ cos (nO) de

Bn _ 1 fo2" C& sin (n@) dO (A2)

n=1,2,3 and 0=kt /

Once the coefficients of A0, A n and B n have been found, the next step is

to split the coefficients into two groups by using the following formulas,

A.1



cos n@ = C(n,O) cosn@ - C(n,2) cos"-2@ sin2@

+ C(n,4) cos"-4@ sin4@ + ...........................

sin n@ = C(n, I) cos"-1@ sin@ - C(n, 3) cos"-3@ sin3@

- C(n,5) COSn-S@ sinS@ + ........................... (A2)

where

C(n,m) = n! and
(n-m) ! m!

n! =1,2.3.4.*****n

Therefore, the response of C L becomes

C L = A 0 + A 1 cos{) + A2[cos2{) - sin2{)]

+ A3[cos3{) - 3cos8 sin20]

+ B 1 sin{) + B2[2cos{) sin{)]

+ B 3 [3cos28 sin8 - sin3{)]

= A 0 + [A 1 + A 2 cos{} + A3(cos28 - 3sin2{))] cos8

+ [B1 + 2B 2 cos{) + B 3 [3cos28 - sin28] sin8

= A 0 + F(cos8 , sin{)) cos{) + G(cos{), sin{)) sin{}

Perform the Fourier analysis again for functions F(cos8 , sin{)) and

G(cos8, sin{)) by using Fourier series with the same terms as in the first

step. Then

A.2



F(cose,sinO) = F 0 + FA 1 cos{} + FA 2 cos2O + FA 3 cos3e

+ FB 1 sine + FB 2 sin28 + FB 3 sin38

G(cosO,sinfl) = GO + GA 1 cos{) + GA 2 cos2fl + GA 3 cos3fl

+ GB 1 sin{) + GB 2 sin20 + GB 3 sin3e

where

I fo2_ 1 fo2_F° - 2 7r F d {} G°- 2 _ V d e

FA n 1 fo_ 1 fo2"- F dO GA n - G d 8

FB n i f02_ I fo2x- F d @ GB. - G d 8

n = 1,2,3

Using eq. (A3) again, then

F(cose,sine) = F 0 + FA 1 cos{) + FA 2 [cos2@ - sin2@]

+ FA 3 [cos3{) - 3 cose sin28]

+ FB 1 sin{) + FB2[2cos8 sine]

+ FB 3 [3cos28 sine - sin38]

G(cosS,sine) = G o + GA 1 cos{) + GA 2 [cos2{) - sin2{)]

+ GA 3 [cos3{) - 3 cos{) sin2{)]

+ GB 1 sin{) + GB2[2cos{) sin{)]

+ GB 3 [3cos2{) sin{) - sin3{)]

A.3



Therefore

CL = A o + {F o + FA 1 cos0 + FA 2 [cos20 - sin20]

+ FA 3 [cos30 - 3 cos0 sin20]

+ FB 1 sin0 + FB2[2cosO sin0]

+ FB 3 [3cos20 sin0 - sin30]} cos0

+ {G O + GA 1 cos0 + GA 2 [cos20 - sin20]

+ GA 3 [cos30 - 3 cos0 sin20]

+ GB 1 sin0 + GB2[2cosO sin0]

+ GB 3 [3cos20 sin0 - sin30]} sin0

All the terms associated with cosnO on the right hand side of the above

equation are divided by (C¢o)n and the terms associated with sinno are

divided by (-ka0)n. After rearrangement, the response of C L becomes

C L = A 0 + {CC[0,0] + CC[1,0] a + CC[2,0] a2+ CC[3,0]a 3

+ DC[0,1] a + DC[1,1] a(i + DC[2,1] (_2(_

+ CC[0,2] a 2 + CC[1,2] aa 2 + DC[0,3] a 3 } a

+ {CS[0,0] + CS[1,0] a + CS[2,0] (_2+ CS[3,0]a3

+ DS[0,1] _z + DS[1,1] at_ + DS[2,1] a2a

+ CS[0,2] a 2 + CS[1,2] aa 2 + DS[0,3] (i 3 } a (A4)

A.4



where

FA.÷m FBn+m
CC[n,m] = , DC[n, m] =

[ao" (-kal)] [a_ (-k=l)]

GAn÷m GBn+m
CS[n,m] = , DS[n,m] =

[a_ (-kal)] [ao_ (-k=l)]

and the coefficients CC[n,m], DC[n,m], CS[n,m] and DS[n,m] are zeros for

n+m a 3. Comparing with eq. (A1), it is obtained that

F 0 = A 0

F(a, a) = CC[0,0] + CC[1,0] a + CC[2,0] ¢z2

+ DC[0,1] a + DC[1,1] ae + CC[0,2] _ 2

G(a, a) = CS[0,0] + CS[1,0] a + CS[2,0] a 2

+ DS[0,1] a + DS[1,1] ae + CS[0,2] _ 2

Finally, collecting the same order terms together, then

C L = A 0

+{ CC[0,0]a + CS[0,0]a }

+{ CC[1,0]a 2 + DC[0,1]ad +CS[1,0]ad + DS[0,1] d 2}

+{ CC[2,0]a 3 +DC[1,1]a2e + CC[0,2]aa 2+CS[2,0]a2a

+DS[1,1]ae 2 + CS[0,2]_ 3 } (A5)
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